
Study on the state of the art in the
field of gesture recognition

Introduction
In recent years, the concept of human-computer interaction (HCI) has been at the core of many
scientific and sociological developments. Combined with the power of machine learning algorithms,
it has led to some of the most outstanding achievements in nowadays technology which are used
successfully in an ever-increasing number of areas impacting our lives, e.g. medicine [31], autonomous
driving [43], natural language processing [83], etc. Researchers all around the world focus on providing
new intuitive and accurate ways of interacting with devices around, based on gesture, voice, or vision
analysis [41]. Gestures constitute a universal and intuitive way of communication, with the potential
of bringing the Internet of Things (IoT) experience to a different, more organic level [66]. Automatic
gesture recognition (AGR) algorithms can be successfully used in various applications, from sign
language recognition (SLR) [13] to VR games [82].

Electromyography (EMG) is the process of measuring the electrical activity produced by mus-
cles throughout the body using electrodes on the surface of the skin or inserted in the muscle [7].
Motor intent deciphered from surface EMG signals has been employed as an intuitive control strat-
egy for dexterous multi-functional prostheses [73] and gesture recognition interfaces [70]. Myoelectric
prostheses relate residual limb muscle activity to the movement of a terminal device, sometimes, by
employing pattern recognition approaches to identify repeatable and distinct EMG signatures for each
motion class. State-of-the-art EMG pattern recognition systems for multi-function prostheses typi-
cally contain data pre-processing, data segmentation, feature extraction, dimensionality reduction,
classification, and control blocks [52]. Conceptually, this architecture can facilitate intuitive control
that mimics natural neural pathways. For decades, despite substantial research and development
efforts in the literature, the only real commercial application of EMG signals has been prosthetics.
Recently, with the release of wearable EMG gesture control and motion control devices, such as the
Myo armband in 2013, new markets have been opened. Advancements in wearable technologies have
increased the potential for myoelectric devices to permeate into everyday life; however, these emerg-
ing gesture recognition interfaces suffer from similar sensitivities to many real-world factors that have
been identified in the field of prosthetics [58, 64].

The real challenge for prostheses and gesture recognition interfaces are the dynamic factors that
invoke changes in EMG signal characteristics. As a consequence of these factors, model inaccura-
cies are produced between the training phase and practical use. The common avoidance of these
dynamic factors in laboratory settings creates a discrepancy between the performance of these de-
vices in constrained settings and their reliability in regular daily use. Under ideal conditions, such as
in a controlled virtual environment, the usability of multi-function prostheses has been reported to
suffer when classification accuracy drops below 90% [29, 39]. While classification accuracy provides a
benchmark in the laboratory, daily use invariably introduces dynamic variables not present in these
conditions, leading to decreased accuracy and, ultimately, reliability of the device [27, 73]. From day
to day, the reliability of previously trained models varies greatly depending on multiple factors in-
cluding intra-subject repeatability, signal noise, different muscle contraction intensities and duration,
limb position and forearm orientation, electrode shift, and muscle fatigue. Hands-busy conditions
present additional challenges for gesture recognition tasks by introducing increased signal complexity.
Furthermore, while the prostheses field has focused largely on within-user models, the widespread
scaling of commercial devices for human-computer interaction would benefit from the development
of multi-user classification models to eliminate the need for custom training and lengthy calibration
protocols.
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Gesture recognition based on EMG signals
The capacity to classify electrical responses from the muscles holds the key to creating reliable intel-
ligent prostheses for people who have lost a limb in order to lead a normal life. Besides this utility,
a system capable of classifying gestures in real time can be used to interact with various intelligent
devices, e.g. drones, ground rover thus making the control much more intuitive and interactive [2, 6].
Even though this domain appears to have great potential and the research community is very active,
reliable and affordable EMG classification techniques are not yet commercially available. This pa-
per aims to make a further step in bringing electromyographic-based utilities to the general public.
Usually, EMG classification projects do not consider designing their own acquisition module. One
explanation would revolve around the added complexity that this feat would bring to the existing
difficult research scheme. Another reason is the availability of EMG acquisition devices on the mar-
ket. The latter is not necessarily still relevant today due to a very popular acquisition device being
discontinued. For example, Myo armband, a prominent EMG signal recording module in the field
[46], [30], [42], [4] is no longer available for buying [80]. Ideally, it is desired to have an entire EMG
classification ecosystem with little dependency on external factors.

Pattern recognition systems, which generally consist of data pre-processing, data segmentation,
feature extraction, dimensionality reduction, and classification stages (represented in Figure 1) [55],
have found widespread success across many fields of biomedical engineering, including myoelectric
control [73].

Figure 1: A structure of EMG gesture recognition systems [55]

Data pre-processing involves the strategic removal of confusing information or sources of data
corruption. In EMG applications, after the raw EMG signals are prepared, a number of data pre-
processing steps are applied to reduce the influence of noise, which could compromise their interpreta-
tion. Sources of noise common to EMG applications include, but are not limited to, motion artefacts,
power-line interference, and electronics noise inherent in the equipment. Pre-processing steps are used
to reduce the impact of these sources of corruption and prepare the input data for further analysis
[14, 69].

Data segmentation involves various techniques to further prepare the pre-processed EMG signals

2



before applying classification techniques. This step is necessary due to the fact that the stochastic EMG
signals, obtained as a time series in the time-amplitude domain, are non-stationary or exhibit “non-
stationarity.” Many feature extraction methods assume that the data are stationary, and so the longer
EMG time series is partitioned into shorter EMG segments to estimate the properties of the signal.
For real-time myoelectric control systems, however, the length of these segments plus any computation
must be less than 300ms to avoid noticeable delays [18]. The two main techniques for data segmentation
include adjacent windowing and overlapping windowing. In adjacent windowing, contiguous and
disjoint segments of a predefined length are used. More commonly, overlapping windows with window
increments less than the segment length, are used to improve the density of the resulting decision
stream.

Feature extraction is the process of improving the information density of the processed signals, often
transforming the signals from a higher dimensional input space into a lower dimensional feature space.
The selection of appropriate features has a tremendous impact on the performance of any pattern
recognition system and the ideal feature set is heavily dependent on the classification task. Within
the myoelectric control literature, EMG features have been commonly divided into three categories:
time domain, frequency (spectral) domain, and time-scale (time-frequency) domain [57, 59, 61, 63].
The availability of high quality features that possess good class separability, minimal complexity, and
are robust to dynamic factors is the most influential aspect of myoelectric control system performance
[9, 85].

Dimensionality reduction is the process of either searching the computed feature space and select-
ing an optimal subset of high performing features (feature selection) or combining all initial features
and projecting them based on some linear or non-linear mapping (feature projection) in order to max-
imize classification performance. Some commonly used dimensionality reduction techniques include
sequential forward selection (SFS), genetic algorithms (GA), principal component analysis (PCA),
and independent component analysis (ICA) [52, 56, 60].

Finally, classification involves the use of a boundary detector, or discriminant function learned
through past events to estimate the class of a current event given the features presented. Substantial
exploration and development of classification algorithms have been performed in myoelectric con-
trol, validating the viability of algorithms such as linear discriminant analysis (LDA), support vector
machines (SVM), hidden Markov models (HMM), and artificial neural networks (ANN) [52, 60, 73].

The structure of the previous system represents a general solution, but also various approaches for
AGRs, based on image or video stream analysis, leveraging on computer vision algorithms have been
proposed; see for example [23, 38, 16]. Multi-modal approaches for gesture classification have been
also studied [49]. Although a good performance is achieved on synthetic data, in real-life scenarios
these systems may be sensitive to environmental conditions, e.g. light conditions, background, etc.
Additionally, these systems are often computationally demanding and consequently not always suited
for real-time applications. Because of these reasons, classical approaches that include Support Vector
Machine (SVM) or Random Forest (RF) are still popular due to their simplicity. In [37] Kobylarz
et al. tackle the problem of ternary gesture classification. Their results show that an ensemble of
Random Forest and SVM achieves the best result (91.74%) in comparison to other statistical learning
paradigms. Another approach is to take into account the fact that the EMG signal consists in temporal
correlated data. Therefore, networks that consider time series particularities, such as Recurrent Neural
Networks (RNN) are worth exploring. Simao et al. [75] show that although architectures such as RNN,
LSTM and GRU indeed yield good results, their efficiency in terms of accuracy are similar to classical
feed-forward networks (91%-95% depending on the dataset). Nonetheless, the dynamic models may
still be relevant due to their less computationally expensive architecture, thus minimizing the training
and inference time.

Accelerometers and electromyography (EMG) sensors provide an alternative low-cost technology
for gesture sensing. The applications of sEMG-based classification systems are focused on, but not
limited to, assertive devices and rehabilitation or postural control therapy for physically impaired
persons [35]. With the continuous development of more versatile signal processing techniques, the
applications of EMG signal classification expanded to a wide range of domains including augmented
reality, gaming industry, military applications, etc.[36, 50]. Acquiring a multichannel EMG dataset
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may be challenging due to the constraint of always keeping the sensors in the same position with
respect to the muscle groups of all participants. Also, usually all subjects must have the same upper
limb position during recording

The influence of external factors on gesture recognition systems
Although classification rates of above 90% have been demonstrated in many studies, several problems
must still be solved before practical and robust implementations of commercial myoelectric control
systems can be realized. Consequently, four of the main challenges to deployable myoelectric control
are discussed in detail in this chapter: (1) within-day and between-day variation, (2) noise, (3) variation
in force, and (4) variation in limb position and forearm orientation.

The re-usability and sustainability of myoelectric control systems pose a major concern for real-
world applications as devices designed for long-term use often require frequent retraining. Indeed, the
requirement to retrain these devices regularly has been seen as a hindrance to the commercialization
and adoption of consumer-grade myoelectric control systems. Regardless of the model performance
upon creation, the non-stationarity of EMG signals (i.e., their characteristics change throughout the
day, and between days) gradually degrades its performance over time (up to 20–30% [47, 53]). The
source of these natural variations over time has been attributed to many factors including spatial
orientation (electrode shift), electro-physiological factors (muscle fatigue, sweating, skin impedance),
user intent (muscle contraction effort), and many other potential factors. Most studies make the false
assumption that EMG signals are a stationary process and thus have neglected to model any temporal
variations in the signal over time. A common characteristic of these studies is their short collection
period (i.e., a single or few sessions in one day) within constrained laboratory settings, thus largely
avoiding these signal changes.

EMG classification performance for able-bodied and amputee populations continuously degrades
as the period between training and testing increases [3, 10, 32, 62, 81]. However, there is no consensus
on the amount of training data sufficient for a fixed classification model to reach an asymptote in
accuracy. While Waris et. al. [81] found a continuous decrease in performance over 7 days, a number
of other studies have found that there may be periods when the classification performance is rather
stable or even improves. Some have found that classification accuracy initially decreases exponentially,
but then plateaus after 3 days [62], 4 days [3, 32], and 6 days [10] for able-bodied individuals, and
6–9 days for amputees [32]. A possible explanation is the subject learning effect, wherein subjects
begin to elicit more repeatable gestures after becoming familiarized with the process. Because this
subject learning mainly occurs during the first several days [77], training data collected after this
period could reduce the need for classification algorithms to compensate for user adaptation. For
example, Milosevic et. al. [47] found that training a classifier with data after 4 and 5 days of use
provided better results for later days (testing on the 6th) than training with data from the 1st and
the 2nd days of use (and testing on the 3rd day).

The majority of EMG signal processing and pattern recognition algorithms assume that the EMG
data are of high quality, which can lead to invalid results or interpretations if this assumption is
incorrect. It is widely acknowledged that noise contamination of EMG signals is an unavoidable
problem involved in the recording data. In other words, raw EMG signals typically contain not only
useful information but also some irrelevant or confounding information that adds ambiguity. The raw
signal cannot, therefore be used directly, and data pre-processing is necessary to reduce the effect of
noise and to improve the spectral resolution of the EMG signal. Common noise contaminants in the
EMG signal can be categorized into many forms [14, 22, 45, 79], for example; (a) motion artefacts, (b)
electrocardiogram (ECG) interference, (c) power line interference, (d) quantization noise, (e) analog-
to-digital converter clipping, (f) amplifier saturation, (g) spurious background spikes, and (h) additive
white Gaussian noise (AWGN). However, several types of noise manifest outside of the useful energy
band of the EMG signal or only in a narrow specific frequency band of the signal. For instance, power
line interference is clustered around 50 Hz or 60 Hz (depending on geographic location), while motion
artefacts tend to be band limited in the frequency range of 0–20 Hz [69]. Use of conventional filters
such as finite-impulse response (FIR) and infinite-impulse response (IIR) filters can therefore reduce

4



these types of noise with minimal impact on the usable EMG signal [28, 17]. For example, De Luca
et. al. [17] recommended using a Butterworth filter with a corner frequency of 20 Hz and a slope
of 12 dB/oct to filter movement artefact and baseline noise contamination. Powar et. al. [65] used
an FIR filter with coefficients that lead to the extraction of high kurtosis EMG, and that increased
the classification performance by 20.5%. Adaptive digital filters, such as least mean square (LMS)
and recursive least square (RLS) algorithms, have also been proposed to remove these kinds of noise
[21, 51, 86].

Conventional myoelectric control schemes use an EMG amplitude estimator (such as MAV and
RMS [63]) to map the intensity of the contraction of the underlying muscles to the velocity or position
of a cursor or device [105]. Pattern recognition based myoelectric control, however, relies on clustering
repeatable patterns of EMG activity into recognizable classes. Contractions performed at different
force levels may result in drastically different features, resulting in a considerable impact on the
performance of a classifier. In a study by Scheme et. al. [73], the ability of pattern recognition
based myoelectric control to recognize human gestures in the presence of deviations in contraction
intensity deviation was explored. EMG from 10 gestures was recorded at intensities ranging from 20
to 80% of maximum voluntary contraction (MVC) from 11 able-bodied subjects using an 8-channel
wearable EMG armband. To test the ability of EMG pattern recognition to handle unseen force
levels, the classifier was trained with each force level and then tested with each and all force levels.
As expected, classification accuracy was maximized when the classifier was trained and tested with
similar force levels, while the presence of contractions from unseen force levels increased the error
considerably (between 32 and 44%). These results were later reiterated when Al-Timemy et. al. [1]
investigated the effect of force variation with two transradial amputees. Similarly, their results showed
that classification performance is degraded by up to 60% when the force level is varied. Importantly,
the classification accuracies were found to be lower for high force levels as the amputees struggled
when generating this high, and unsustainable levels [1].

The same hand and wrist gestures can also generate substantially different signal patterns when
performed in different limb positions and forearm orientations, increasing classification error, and re-
ducing robustness in real-life use [12, 20, 34, 44, 74]. It has been noted, however, that the impact
of changes in limb position is less pronounced in amputees than with able-bodied subjects [25, 33].
Nevertheless, several studies have proposed three main methods to address this problem: (1) training
the classifier using EMG signals recorded from different pre-defined static positions or during dy-
namic motion between pre-defined positions; (2) using accelerometers to measure arm positions and
orientations; and (3) developing robust feature extraction, dimensionality reduction, and classification
algorithms that can suppress the impact of position and orientation variations.

As with force level, a similarly successful strategy has been to inform classifier boundaries of
the effect of limb positions and forearm orientations by including exemplars from each position and
orientation during training [12, 20, 34, 74]. For instance, Scheme et. al. [74] trained an LDA classifier
using EMG recorded in 8 different limb positions to discriminate eight different gestures. Within-
position accuracy was found to be best with the arm hanging straight down while the position that
provided the worst accuracy was when the elbow was bent at 90°. Khushaba et. al. [34] trained an
SVM classifier using EMG recorded from 3 different forearm orientations (i.e., wrist fully supinated,
at rest, and fully pronated) to discriminate six different gestures. Yang et. al. [84] investigated the
effect of both limb positions and forearm orientations, and found that the classification performance
of hand and fingers gestures are more highly impacted by forearm orientation than limb position. This
result is intuitive given the proximity of extrinsic hand muscles, widely used as primary EMG sites, to
the pronator and supinator muscles. Although incorporating different positions in training protocols
has been shown to improve the classification accuracy, the training time and burden again limit the
clinical viability of such systems [8]. Using either a dynamic motion between predefined positions or
free movement of the arm in the 3-dimensional (3D) space while eliciting training gestures is therefore
seen as a preferred training strategy [24, 68, 72].
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Ensuring robustness in a gesture recognition system
In addition to what has already been discussed previously, two critical issues need to be addressed
when developing AGR algorithms: fast enough inference to ensure real-time feeling for the end-user,
and accurate and robust classification to guarantee that the gesture is correctly identified no matter
the environmental conditions. Machine learning methods have become ubiquitous tools in a wide
range of tasks including AGR, on account of their ability to solve a great variety of problems, from
simple regressions to complex multi-modal classification.

Machine learning approaches have proven to yield results that overcome previous deterministic
methods. Nevertheless, although very promising, machine learning in general and deep learning in
particular need extensive datasets in order to train and offer trustworthy results [67]. Deep neural
networks, which are probably the most powerful methods, may appear as black boxes whose robustness
is not always well-controlled. For real-life applications, it is mandatory to guarantee the reliability of
such techniques. Nowadays, the main difficulty to overcome consists in developing high-performance
systems that are also trustable and safe. An additional challenge is to avoid implementation heaviness
during the learning phase.

In [76], the authors showed that slightly altering data inputs that were correctly classified by the
network can lead to a wrong classification [40, 11, 78]. This finding was at the origin of the concept of
adversarial inputs, which constitute malicious input data that can deceive machine learning models.
For example, [11] shows how voice interfaces can be fooled by creating carefully crafted artificial audio
inputs of unintelligible voice that are miss-classified as specific vocal commands by the system. Also,
[26] introduces several methods for generating adversarial examples on ImageNet that are so close to
the original data that differences are indistinguishable for the human eye.

It must be emphasized that adversarial inputs are not necessarily artificially created with the
intention to sabotage the system. As other physiological signals, e.g. EEG or EKG, EMG signals
have low frequency components (usually between 10 – 150Hz), and low amplitudes (≤ 10 mV Peak
to Peak). This makes them very sensitive to noise and outside perturbations that can occur innately,
under the form of noise stemming from acquisition devices, imperfect sensor contact, etc. Those can
seriously flaw the performance of real-life applications based on pre-trained models [48].

In order to limit the unwanted effects introduces by adversarial attacks, as highlighted in [26], the
Lipschitz behaviour of the network is tightly correlated with its robustness against adversarial attacks.
The Lipschitz constant allows to upper bound the output perturbation knowing the magnitude of the
input one, for a given metric [71]. Controlling this constant thus represents a feasible solution to
limit the effect of adversarial attacks. Computing the exact Lipschitz constant of a neural network
is however a very complex problem, so the main challenge is to find clever ways to approximate this
constant effectively. Recently, several techniques to ensure the Lipschitz stability of neural networks
have been explored. For example, [78] proposes a novel weight spectral normalization technique
applied to stabilize the training of the discriminator in Generative Adversarial Networks (GANs).
The Lipschitz constant of the network is viewed as a hyper-parameter that can be tuned in the
training process of the image generation task. Doing so leads to a model with improved generalization
capabilities. In [5] norm-constraint GroupSort based architectures are proposed and it is shown that
they can be used as universal Lipschitz function approximators. The authors apply gradient norm
preservation to create Lipschitzian networks that offer adversarial robustness guarantees. In [15] the
authors introduce Parseval networks, another approach for designing networks which are intrinsically
robust to adversarial noise, by imposing the Lipschitz constant of each layer of the system to be less
than 1. In [19] a convex optimization framework is introduced to compute tight upper bounds for
the Lipschitz constant of Deep Neural Networks (DNNs). They make use of the observation that
commonly used activation operators are gradients of convex functions. Semi-definite programming
approaches to ensure robustness are also explored in [54].

In conclusion, in this stage there have been reviewed and discussed several signal processing and
classification techniques for myoelectric control systems. The practical considerations of how to handle
the dynamic factors prevalent in real-world scenarios were emphasized. In particular, within-day and
between-day variations, signal noise, variations in force, and variations in limb position and forearm
orientation were highlighted, as well as methods for ensuring the robustness of the EMG gesture
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recognition system. Based on all these observations, it is noted that the need for a system capable
of both acquiring EMG signals and processing them in an automatic way, represents an essential
problem in this field. Furthermore, the hardware must be able to record data in a non-invasive way
with maximum efficiency. Also, the software implementation must ensure a robustness to possible
noises introduced, as well as a good performance, in order to ensure that the system provides correct
results for any user.
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